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INTRODUCTION AND SUMMARY

Asymptotic approximations of optimal control laws are
determined here for a class of multivariate dynamic systems in
which the controller has only noisy measurements of system state
components whose second time-derivatives, but not first, can be
directly affected by plant noise or the control. The control
optimization problem for these cases would have the standard
linear-quadratic-Gaussian form except for certain small
nonlinearities involving slowly varying parameters, which are
treated as components of an argumented state vector. Also, the
measurement noise is small in a certain relative sense, which gives
this control problem special properties.

A special case of this problem, which arises in homing missile
guidance, was treated in Reference 1. The only nonlinearity in that
case is a term in the state measurement equation that is bilinear in
the parameter and control (both scalars) and gives rise to a rapidly
varying term in the optimal control law. This rapidly varying term
is generated as the output of a critically damped second-order
system driven by a Kalman filter innovation variable.

The methods used in Reference I depended on special features
of the case treated there; however, the same basic approach can be
applied here with some modification. The result in this more
general case is that-to the level of accuracy retained in the
asymptotic approximations-the same sort of rapidly varying term
appears in the optimal control law. This term results from bilinear
measurement terms in the control and parameter variables, but not
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from other nonlinearities considered here. In general, this extra
control term is a linear function of the output of a multivariate
linear system driven by a Kalman filter innovation variable. These
results are applied to the design of an adaptive pitch autopilot for a
missile as a numerical example.

NOTATION

Unless otherwise stated, lower case letters denote (real finite-
dimensional) column vectors and scalars. Matrices are denoted by
capital Roman letters. AT denotes the transpose of a matrix A, and
tr(A) its trace if A is square.

It will be convenient to make use of three-way matrices,
which are always denoted by capital Greek letters here. For
continuity of notation, the following definitions are adopted for such
a three-way matrix F, with vector x and matrices A and B of
compatible dimensions, and with repeated indices denoting
summation:

(Fx)ij = Fijaxa (matrix)

(AxT)ijk = Aijxk (three-way matrix)

(AF)ijk = AiaJ7 jk (three-way matrix)

(rB)ijk = FijoBk (three-way matrix)

(F')ijk = Fjki and (FT)ijk = rkji (three-way matrices)

[tr(F)] i = Fi (column vector, when
applicable)

With these definitions, the expression AFFBDxxT is fully associative.
Many other consequences are obvious. Some useful but less obvious
properties are
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tr(I~x) = [tr(r)]Tx

A tr(f') = tr(AT')

tr(AI') = tr(rA)

(rB)' = BTr' and (Ar)" = r"AT

(ArB)T = BT[-TAT

(r'x)AT = (Au)x and (rfx)B = (FB)"x.

Partial derivatives of a scalar s with respect to a matrix A and
vectors x and y are denoted by subscripts, with the ccaivention that

(SA~ij as

as j

=sYj a ,sandaxiayi

(SAx)ijk = -a's~

PROBLEM AND BASIC APPROACH

The problem treated here involves a system with dynamics

x = Fx + v()

v = Kx + Dv + Gu + w, (2)

a controller of which receives the vector measurement

5
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z = x + h tr(r"0uT) + n (3)

and selects the control vector u at each time instant t > 0. The time
variable t is suppressed in the notation here, and the coefficient
matrices may be time-varying. 0 is a constant but unknown
parameter vector, w and n are zero-mean Gaussian white noise
processes with respective covariance parameters Q and R/m 4 , and h
and m are positive scalars such that

h v I < «1. (4)

m

A priori,

[x(0 ) - P10 0 0

v(0) is a Normal 0 P 30 0 (5)

o A 0 0 L0

random variable independent of w and n. The objective is to find a
control law that minimizes the scalar performance criterion

+ EO [T T ]  2X

+o 1t[XT VT] [AT A31 [V + u TBu}It} (6)

where E denotes prior expectation and tf > 0 is some specified

terminal time. As usual, a control law is defined as a decision rule
that, for each t in [0, tf), specifies the current control u(t) as a

function of the current measurement history {(z(v), xV): 0 : q < t).
Also, in the above, P10 , P30, and L0 are positive definite, B(t) and R(t)

are positive definite for each t E [0, tf], [ 2  is positive-
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semidefinite, and Q(t) and A (t) A2(t) a
[A2(t) A3 (t arIoiiesmdfnt

for each t e [0, tf]. Without loss of generality, these matrices are
assumed symmetric as well.

Finding such an optimal control law is very difficult, so we
only consider the problem of finding an approximation thereof that
is asymptotically accurate to order h2 m3/2 for the inequalities of
Equation 4, i.e., when 1/m and mh are both small. What is meant by
such an approximation is that the control law always generates a
control value u which is the same to order h2 m3/2 as that generated
by an optimal control law, except perhaps for a set of measurement
histories of negligibly small probability. The size of m and the size
of 1/(mh) if h * 0 are considered to be large enough here that the
components of F, K, D, G, r, P10, P30 , L0, $ 2, $3, A1, A 2, A3, Q, Q-1, R,
R-1, B, B- 1, and their time rates of change, if any, are always of order
unity by comparison.

Also, the treatment of this problem is limited here to finding
the control law associated with a cost-to-go function which has the
formal appearance of satisfying the Bellman equation corresponding
to Equations 1-3, 5, and 6 to order h2 m 3/2 . This control law would
be the desired asymptotic approximation if the equations involved
in the analysis are well posed and the formally higher-order terms
in them are indeed so in some appropriate sense. A mathematically
precise verification of these conditions is beyond the scope of this
investigation, however, so in this sense the control law obtained
here is only a plausible candidate for the approximation being
sought. This plausibility is enhanced, though, by the fact that the
actual optimal control law is well known and rigorously justified for
h = 0 (a standard linear-quadratic-Gaussian case) and the
approximation derived here for small h converges to this control law
as h -+ 0. Nevertheless, it is still important to augment this type of
formal analysis by testing the results on specific numerical
examples. One such example is included here, and the theory seems
to give reasonable and useful results in this case.
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Even formally, the asymptotic accuracy of this control law

approximation is less than that obtained for the special case
examined in Reference 1, where all control terms of order h2 were
included in the approximation. As it happened, the other order-h 2

control terms had an equally important effect on the performance
criterion even though they were small compared to h2 m 3/2 . For the
more limited purpose of investigating the salient features of control
laws that are optimal for such criteria, however, it is consistent to
limit the accuracy of the control law approximations here to order
h 2 m3/2. As in the example below, the performance criterion is often
used only as a device to generate, by its optimization, a control law
with desired properties.

MOTION-STATE AND PARAMETER ESTIMATION

The motion state (x, v) of the dynamic system and the
parameter vector 0 satisfy the linear system of equationsxi Fi 1 0 x 0 0i

= DO v+ L u+ I w. (7)

Since the initial value of the composite state (x, v, 0) has a Normal
prior probability distribution and since current and past values of u
are presumed known to the controller, it is a standard result
(Reference 2) that the current conditional probability distribution of
this composite state, given current and past values of z, is also
Normal, with mean and covariance matrix given by the Kalman filter
equations for Equations 3, 5, and 7. If this conditional mean and
covariance matrix are partitioned in the obvious way as

[ PI P2 Eli

and P2 P3  ,
SLLE

these Kalman filter equations can be expressed as
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x = Fx + v+ m[,+ h(rTET)'u]I-l(z - i); i(0) = 0 (8)

v= Ki + Di' + Gu + + rE[puRlz

i'(0) = 0 (9)

A T
0 = m4[ET1+ h(I' L) uRlU(z - i) ; (0) = 0 (10)

T TTu]-
P = FP + P1F + P2 +P 2 -m

4[P,+ h(rTEI)~uR

x [P1 + h(ElJT'u]; PI(0) = P10  11

P 2 =FP2 +PTDT + PKT + P3

- [p + h( T ET)'u]Rl[IP 2 +h(E 2r)'u]; P2(0)= 0 (12)

P 3 =KP2 + P2 K + DP3 +P 3 DT +Q -

24 [+ hOT ET)'u]R'[P2 + h(E2 F)'u]; P3(0) =P 30 (13)

tj= FE, + E2 - m4IiP, + h(FTE)tu]R-l

x [El + h(Lr)uI; EI(0) = 0 (14)

3= KE, + DE2 - 24 P + h(FTET)'u]R-d

x [El + h(Lrl'u]; E2(0) =0 (15)

L=-n14[ET + h(FTL)'u]R-1[E1 + h(LF)'u; L(0) L (16)

where

9
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= + h tr(F"0u). (17)

It is also convenient to define

= m 2 (z - (18)

which is the normalized innovation process for this filter. As such,
can be treated as a zero-mean Gaussian white noise process with

covariance parameter R in determining the statistical behavior of X,

v, and 0 (Reference 3).

It happens that L varies more slowly than the other
covariance matrix partitions. A key step that takes advantage of
this is to define the nominal time functions P1 , P2, and P 3 for t _ 0
by

-T - -T 4- 1-P1 
= FP1 

+ P1 FT+ P 2 + P2 - mP 1 R-P1 ;P 1 (0) =P 1 (0) (19)

P 2 =FP2 +P27DT +P 1 KT +

P3 - m4 P1R- 1P2 ; P2 (0) = P 2 (0) (20)

P3 -= VP 2 + PKT + DP3 + P 3DT +

4fT 1Q- m 2R- P2; P3(0)= P3(0) (21)

and let

(P - T,) - T T
N 1 = In muf'LF u (22)
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(P 2 - P2)N2 =, (23)
N2

N 3 = 2 (P3 - P3) (24)
mh 2

M -- [El + h(LF)'u] (25)
h

M 2  E2 (26)h

It follows fairly directly from known properties of conditional
covariance and precision matrices for multivariate Normal
distributions (Reference 4) that the conditions imposed on Q and R
in the preceding section imply that

All components of P1 are of order 1/m3 ,

All components of P' are of order m3 ,

All components of P2 are of order 1/m2 , and

All components of P3 are of order 1/m,

except perhaps for initial transients with durations of order 1/r.
These magnitudes are established by considering the estimation
problem for F = 0 and its usual dual for the precision matrix, and,

for each i, deleting all measurements except zi in bounding the

variances of xi and vi (and likewise in the dual problem).
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APPROXIMATE ESTIMATOR BEHAVIOR FOR
A CLASS OF CONTROL LAWS

If h were zero, it is a standard result that the optimal control

law for Equations 1-6 would be of the form u = - - -'V, where H(t)

and W(t) are certain deterministic time functions such that HF, W, H,

and W are all of order unity. Since we are only concerned with
small h here, we consider control laws of the form

u = -I-I - W + 11 (27)

for which H and W are deterministic time functions, to be chosen for

convenience later, such that H, W, H, and W are of order unity, and
for which the components of il are small compared to unity, except
perhaps for a negligibly improbable set of realizations. For such a
control law, it follows from Equations 8, 9, 16, and 18 through 27
that

'=-(mh) 2 MTR-M1, (28)

• ~ 1{

+ (mh) 2 [N,- MFT'(Hi + Wv- i)}R-14, (29)

and

= (K - GH)i + (D - GW)' + {m 21

+ (mh 2 )[N 2 - M2FT'(Hi + Wv'- q)]}R-t. (30)

12
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Expressions for M1 , M2 , N1, &2 , and &3 can also be obtained for this

case by differentiating Equations 22-27 and substituting from
Equations 8-16 and 18-21. These expressions are quite lengthy in
their entirety; however, retaining only the terms that are needed to
determine the optimal control to order h2m 3/2 reduces them to

= m[M2 - m3p1R- 1M1 - m2(LF)'WF2R-], (31)

3pT 1M2 = -m 3
2 R- M1 , (32)

1  = m(N 2 + N)- m4[PiR-'Nl + N1R-1P1

- (MIIRP 1P + PjR-FTMT/)'(Hi + Wr'- Ti)], (33)

f12 = m[N3 - m3l 1R-1N 2 - m2N 1R- 1P2

+ (m3M2 R-'1P1 + m2 5R-1FTMT), (Hi + W ,- ii)],(34)

and

&3 = DN 3 + N 3D R-'N2 +mL2 2

- (P2TR- FTM 2 + M2 R-IP 2)' (Hi + W, -T)]. (35)

Establishing that these truncations are sufficiently accurate uses the

orders of magnitude established earlier for P 1, P2, P3, and P-11 and
follows a multivariate version of the corresponding analysis in
Reference 1. This basically proceeds by assuming appropriate
orders of magnitude for all the quantities involved and showing that
no order-of-magnitude contradictions occur in any of the
(untruncated) equations above or in the Bellman equation and
approximate solution of the next section. It also entails analyzing
Equations 29-35 as a noise-driven system to conclude by standard
methods (Reference 3) that the M1, M2, N 1, N2 , and N3 components
are all random processes with values of order m1 / 2, except perhaps

13
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for an initial time interval of order 1/m, which become
approximately uncorrelated over a time interval of order 1/m.
Since this and Equation 28 imply that L only changes by order (mh) 2

during the correlation time of M1 , it also follows from this argument
that the difference (componentwise) between L and its prior
expected value for such a control law is always small compared to
unity (except for a set of realizations of negligible probability). The
reason is that order-unity changes in an L-component behave
basically as the sum of 1/(mh) 2 independent random increments,
each with mean of order m and variance of order m2 . Hence, the
variance of this sum is of order (mh) 2 , which is small compared to
unity by assumption.

CONTROL OPTIMIZATION

Since H(t) and W(t) in Equation 27 are considered specified,
the problem here reduces to that of finding an optimal control law
for the perturbation control nl to which we seek only an asymptotic
approximation. A convenient choice of H and W will be used for this

purpose, but one for which H, W, H4, and * are of order unity.

An optimal expected cost-to-go function can be defined
consistently in terms of time and the conditional distribution of x, v,
and 0 (Reference 5). Thus, the Principle of Optimality of dynamic
programming can be applied in the usual way (Reference 6) to
derive a Bellman equation for this function, the solution of which
specifies the optimal control law for 'n. Since the conditional
distribution here is Normal and therefore specified by its first and
second moments, such a solution can be expressed in terms of t, i, ',
0, M1 , M2 , N 1, N2, N3, and L. The derivation of the Bellman equation
for this class of cost functions requires the conditional expected
values of increments Ax, Av, Ab, AL, AM1, AM2, AN1, AN2 , AN3, and of
quadratic products of their components, over an infinitesimal time
increment At, given the data up to the beginning of this time
increment. Since this conditioning is equivalent to conditioning on
the conditional distribution of x, v, and 0 at that time, these
expectations can be evaluated from (the untruncated versions of)

14
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Equations 28-35 and the corresponding equation for 0 (which will
not be needed for the level of accuracy retained below). Here, Ai is

taken as xAt, etc.

In so doing, we retain only terms up to order h2 m 3/2 and
h2 m 3/2y (y any product of rl-components) in the resulting Bellman
equation. Also, we restrict consideration to possible solutions (also
denoted J) of the form

11 [~ j] S1 2 x + h2 ftr[Q N +Q 22 .. [ S2T [ S3JLQ ] i 1 +QN

(Q3 +2 S N3] +[ rT] tr (A[M,: M2])}+ f(t), (36)

where the S, Q, and A components are all of order unity and
functions of t only, with S1, S3 , Q1, and Q3 symmetric, and for which
1, the time-.derivative of the associated optimal perturbation control,
contributes only terms small compared to h2 m3/2 to the Bellman
equation for the choices

H =B-1GTS T

(37)
W =B-1GT S3

These restrictions and choices of H and W reduce the resulting
Bellman equation and boundary condition to

15
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-J t = rain E A 2

- /data (t){2 A [ Ax I LA

+-I 1 Brl +-L(xS 2 +TS 3 ) GB-G
2 2TjTT + -(TS2' + vT ) B- T

x (S2i + 3- (Ts + ,Ts3) GB-1i

+ Jx + Jv! + tr(JN 1 "1 + JN2& 2 .+ JN3 N 3 )

+ tr2--J xxT + Jvx I T)dt

+ MItr(JM i + JM 'v)dt

J(tf,E { [xT(tf) vT(tf)] (3 8 (tf)

/data (tf) LT S Lv(38)

for M2 as approximated by Equation 32, where subscripts now
denote partial differentiation.

From Equation 36, the indicated partial derivatives are

Jt = ljT§Ii + iT 2  + ivTS3v + h 2 tr IN, + N

+ (Q 3 + TmS3)N3] + h2[xTvT] tr (A[M 1 M 2]) +

j= x S 1 + ST+h 2 trT (AI[M1 I M 2])

J =xTs2 + S 3 + h 2 trT (A 2[M1 i M 2])

16
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JNI = h2 Q1

JN2 = h2Q2

JN3 = h2(Q 3 + S3

i= S

Jxv = S2

J S3

JMi x = h2A3

JM1v h2A 4 ,

where A 1, A2 , A3 , and A4 have components which are either zero or
components of A. Substituting these expressions for the partial
derivatives in Equation 38 and using the fact that L is
approximately a deterministic time function, which from Equations
28 and 31 is independent of the perturbation control, allows the
conditional expectation in Equation 38 to be evaluated to the desired
accuracy with Equations 28-35 to give the minimand of Equation 38
as

17
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{iT(Aj + S2rG pTS7i + J,(A 3 + S3GBW1 G S3)v + i Br
2

+ mh2 tr [A3N3 + S3(DN 3 + NDT)]l

+ iT(A2 + S2BG T3~ S) + (T + j S2) (Fi + 0'

+ (iT S2 + TS( K - GGS~ji + (D - GW-'GT S3)v

+ mh2 tr {Q1 [N2 + N2- (m 3 P1)R-'N, - NR-'(m3 P,)

3M 1 )T

+ M rR' f), + PIR -r- m y

" (B1G TS Ti + BiG T S3 - 11

+ mh2 tr 1Q2(N3 - M3pR 1'N2 - m2NR 1 Pf2)]

+ mh 2 tr {Q2 (M3 M2 FR-P, + m2p~7T M)

"[B'G T(STi + S3' )-11 + mh 2 tr [M2ST~N

+ m N2R- 1PS 2 - M Q3(PT2R'1N2 + NT2R 1 Pf2)]

+mh2 t{mQ 3(PR 2T~ M2 FR1 Pf2)'

T(T2 t M3ST- I T T
* [BI'GT(2i + S3 ) - 7ilD - mh t{(S 2PR- r M 2

+ m 2 M 1 FR'P 2 S2)' [Bi'GT(ST~i + S3v) -T111 + f(t).

Equating the il -derivative of this expression to zero gives the
minimizing perturbation control as

18



NWC TP 7030

Tj = mh B-'tr {fR-[m3
15(2Q1M 1 + (QT'- S)M 2)

+ m2 1P2(2Q3M2 + (Q2 - ST)M 1)]1 , (39)

which results in a negligible contribution of the Ti -dependent terms
in the minimand to -Jr. Collecting the remaining terms in like
powers of the a priori random variables, evaluating the terminal
boundary expectation in Equation 38, and using Equations 22-24

T Tand the fact that N 1 N, and N 3 = N 3 , show that the Bellman
Equation 38 is satisfied to order h 2 m 3/2 by the function J of
Equation 36 if f and the S, Q, and A components satisfy the terminal-
value system of ordinary differential equations:

-S 1 
= S1 F + Frsj + S2 K + KT ST + A1

- 2 G B - G TST ; S'(tf) =1 (40)

-S2 = Sl + S2 D + FTS2 + KTS3 + A 2

-S2GB-'GTS3 ; S2 (tf)= $2 (41)

-$3 = S2 + + S3D + DTS3 + A 3

S3GB-GTS3 ; S 3(tf)= 3 (42)

1= m{R[(m2P 2) (Si- Q2) - (m31)Qi]

+2[..S 2 - QT2) (M2
1P2)T _ Q, (M3pi)]R1}1

Q1 (tf) = 0 (43)

19
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- = m[(S'- Q2) (m3P1)R-1 + 2Q2 - 2Q3(m 2p2)TR1]

Q2(tf) = 0 (44)

Sm( ST + TS

-= (Q2 2  Q2 - S2 + S3GB'G T S3) ; Q3(tf) = 0 (45)

-Ai = similar expression; Ai(tf) =0; i = 1, ..., 4

-f = similar expression; f(tf)=- tr 1 (t)
2

+ 2S2PT(tf) + V3(01]

since these S, Q, and A components will be of order unity. As a
consequence of the dynamic programming procedure (Reference 6),
the optimal perturbation control for Equations 27 and 37 is then
given to order h2 m 3/2 by the corresponding il of Equation 39.

It also follows from differentiating Equation 39, from
substituting for the derivatives in the resulting expression, and from
the previously established orders of magnitude for the quantities
involved that the time-derivative of the 11 is small enough that it
would contribute only negligibly to the Bellman equation, as was
assumed.

IMPLEMENTATION AND EXTENSION

Defining the matrices

C1 
=  3R-l,

C2 =m 2 R-p 2 ,

Y= 1.S3GB-IGTS3 ,

20
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s -Q2) + '(S 2 -QI) (= ST),
4 4

and

4 4

and using Equations 43-45 gives

-Q1/m = C2(S + A) + (S + A)C T - C1Q1 - Q1CT,

-.-/m = 2(Y- S),

1 T T1-S/m = -(Q3C - SCT-Q1 ) + (C2Q3
2 2

- C1S - QI) + -(C1A - AC 1),2

and

-/rn/ = -L(AC, + C1A) + I(Q3 - SCT- C2Q3 + CIS).
2 2

Since C1 , C2 , Y, and cT1 are all of order unity, this system of
differential equations settles in reverse time with time constants of
order 1/m to its steady-state solution with

A = 0,

S=Y, (46)

C1Q1 + Q1CT= C2Y + YCT , (47)

and
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Q=QT= I(C 2Q3 + Q3C - C1Y YCT). (48)2

By the preceding definitions and Equation 39,

il = 2mh2B -1 ir [F(C 1Q1 - C2S)M 1 + F(C2Q3 - CIS)M 21.

From Equations 46-48, therefore,

Ti = 2mh2B 1  (FCllC2YM2)

to order h2 m 3/2, except within order 1/m of the terminal time.
From the definitions of C1 , C2 , and Y, this perturbation control is

TI = 1 h 2B-(rPPI P2S3GB - GTS 3M2). (49)
2

The final result can be summarized more conveniently by
absorbing h and m into r and R, so that

z = x + tr (F7"uT) + GWN(R). (50)

Except within a terminal time interval of order 1/m (which will no
longer be considered here), the optimal control law can then be
approximated to order h2 m 3/2 as

u = -B-1GT(S 2i + S3 )

+ 1B-1 tr (FP IP 2S3GB-GT S3M2), (51)
2

where S1, S2, and S3 are as determined by Equations 40-42 and i, ,

P 1 , P2, and M2 are generated in real time from the incoming
measurements z by the differential equation system
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X= Fi + + (PI + Ejr u)R 1l(z - i)i(0) given

v=KiDi" u T(P+ E2F T u)R- (z -) ;(0) given

P1 = Ki' + PFT G + P2 '~P ~EFuR

x [P1 + (EIE)'u] ; PI(0) =P 10

P2 = PKT +FP 2 + PTDT +P 3 (PIl+ EIFu)R-1

X [P2 + (E2r)'ui ; P2 (0)= 0

TTTT T
P 3 =KP2 +P 2K + DP3 +P 3DT + Q-_(pT + E2 Eu)Rl

x [P2 + (E2r')'U] ; P3(0) = P30

tj= FE, + E2 - (PI + EIFT u)R 1'[E 1 + (I.V)'u] ; E1(0) = 0

t 2 = KE, + DE2 - (PT2+ E21"~U)R'1[E I + (LE')u] ;E2(0) =0

IL =-(El + LET u)R-'[E1 + (Lr)'uI ; L(0) = L

M, -P1 R MI- M 2 +(LF)W -GT S3P2R (z-)

M1 (0) = 0 (52)

I I PT R-'M 1 ; M2(0) = 0 (53)

with

z=+ tr (rf"Gu)

and u as given by Equation 51.
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This result can be extended to a more general case. In the

preceding context, with c and e denoting the composite vectors []

and v, respectively, the dynamics in this extension are of the form

c=Fc+Gu+tr(AeeT)+tr( euT)+(I+ Te)[O=}
101 (54)

9 = (mh)w 2

where F =FI] and G=0,1' the state measurements are of the

form

z = x + tr (FOuT ) + tr (AcuT) + tr (DeeT) + n, (55)

and the criterion to be minimized is of the form1 t0
J= 2 E{ cT(S + flcf)cf + Jo [aTu + cT(A + .e)c

+ uT(B + le + Eu)u]dt}.

Here, B(t) is symmetric and positive-definite; S 1, A(t), and the
covariance parameter of w 2  are symmetric and positive-

semidefinite; the components of a(t), A(t), B(t), B-l(t), S, and the
covariance parameter of w2 are of order unity; all the components of
the three-way matrices are of order h; and w2 is statistically
independent of w, h, and the prior distribution. This is a special
case of the class of control problems treated to order-h accuracy in
Reference 7 for R and R-1 of order unity, where R now denotes the
covariance parameter of n itself (and so is of order m- 4 here).
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Adapting the derivation of Reference 7 to the more accurate
measurements here and retaining any additional terms affecting the
result to order h 2 m 3/2, simply add the second "dither" term of
Equation 51 to the control law of Reference 7 for this case. M2 is
generated by Equations 52 and 53, where P1 and P2 denote the
corresponding xxT and xvT covariance matrix partitions of the
standard extended Kalman filter for Equations 54 and 55 and where

i= i+ tr (][-,buT) + tr

EXAMPLE - MISSILE PITCH AUTOPILOT
(All variables are scalars in this section)

The attitude dynamics of a missile in its pitch plane are often
approximated as

cc = q- g/V m  (56)

q = Aa + B5 (57)

with

g = Fa + H8, (58)

where (see Figure 1)

a = angle of attack

q = pitch angle rate

g = missile acceleration (in pitch plane) normal to its
body axis

Vm = missile airspeed

8 = fin deflection angle
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/ PITCH

IN ANGLE

FIN DEFLECTION ANGLE, 8

FIGURE 1. Missile Attitude in Pitch Plane.
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and where

I

B = Qsd Cm8
I

Qs,,

M

with

1 2
Q = dynamic pressure (-V2 x atm. density)

2 M

s = missile cross-sectional area parameter

d = missile length parameter

I = missile rotational moment of inertia (in pitch plane)

M - missile mass,

and CmCC, CmS, Cna, and Cn8 are the usual "aerodynamic derivatives."
These areodynamic derivatives are generally treated as constants
for any given missile, although in reality they depend at least
weakly on Mach number, angle of attack, and other variables. The
fin deflection 8 is considered the control variable here, and the
controller is assumed to have measurements only of the current
normal acceleration g. Measurements of the pitch rate q also could
be obtained from gyroscopes, but such additional instrumentation
would add to the complexity and fragility of a missile. Hence, it is of
interest to see what can be done without it. The dynamic system in
this formulation would be that of Equations 56 and 57, with
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Equation 58 substituted for g in Equation 56 if A, B, C, D, and Vm are
treated as known quantities.

The objective in designing the control law (autopilot) is to
make the actual acceleration g(t) follow any reasonable commanded
history c(t). Equilibrium conditions can be found for constant c by

solving Equations 56-58 with o = q = 0 and g = c, which gives

&= FB-AH c' (59)

= C/Vm, (60)

and

(AHFB) 
(61)

for the corresponding values of a, q, and S. A simple option would
be to use Equation 61 as an open-loop control law, using nominai
values of A, B, F, and H. However, missiles are typically so
underdamped that this does not work well even at the nominal
speed and altitude to which these values correspond (see Figure 2a).

In this context, however, if one defines

x = a - ax, (62)

v = q - g/Vm, (63)

U= 8-8, (64)

and the measurement variable

Z= g-c - H ( ,(65)
F F

28



NWC TP 7030

then it follows from Equations 56-61 that

X = V, (66)

v = Ax + Bu, (67)

and

z=x (68)

for constant c at the nominal conditions. Since g is mainly the result
of body lift for a missile (i.e., F * H), it is approximately proportional
to a. Hence, it is reasonable to seek a control law for which x
(deviation of a from its equilibrium value for the commanded
acceleration c) behaves as a high-frequency critically damped
sinusoid. If the full state (x, v) could be measured, the control law
that minimizes the criterion

J=E [ (x2 + G2u2) dtjG >0 (69)

for the system of Equations 62 and 63 with white noise added to v
can be found by standard methods (Reference 8). As long as
G v I B/A I, this control law is approximately

u= - x + -- v) (70)
B G

for tf - t -[ I ' B I, i.e., for any fixed t as the criterion is changed

so that tf -- **. Substituting Equation 70 for u in Equation 67 shows
that x behaves as a damped sinusoid with natural frequency

Q = [(B/G)2 - A2] 1/4

and damping ratio
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OPEN-LOOP CONTROL NON-ADAPTIVE AUTOPILOT

0.1 --- - - -- -- -- --

MACH 1.5
0
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01------ ----------------

0 TIME (SEC) 10

0(c

0 1----- ------------ --------- MACH 2

---- ---- -! 0 ---- --- --- 20 kft.

------~ ~ ~ ---- --- 1 -------------------- ------ (nmnl

0 TIME (SEC) 10 0 TIME (SEC) 10

(a) (b)

'm 
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3
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0 TIME (SEC) 10
(d)

FIGURE 2. Response to 1ig Step Command.
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WITHOUT DITHER WITH DITHER
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FIGURE 3. Adaptive Autopilot Response.
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1 1 12.

For G small enough that Q 1o A 1Th2" (critical damping) and

x behaves as desired. Under these conditions, fQ B I/G ; thus,

using the control law

u = -(02x + V7IQv)/B (71)

would make x behave approximately as a critically damped sinusoid
of frequency fQ as long as 0 >, I A I.

Only the x-component of the state (x, v) is measured directly,
however, so v must be estimated. One way of doing this is to
replace x and v in Equation 71 by the estimates produced from the
measurements of Equation 65 by the Kalman filter corresponding to
Equations 66-68, with white noises added to Equations 66 and 68.
If the respective variance parameters of these noises are qp and r,

this filter will have a settling time r of about (r/qp) 1/4 (see below).
This settling time completely determines the effect of qp and r on

the filter estimates and should be chosen so that Q)t < 1 for the
purpose of using these estimates in Equation 71.

Finally, some of the approximation errors can be canceled out
by using the postulated dynamics to replace the estimated value of
x in this control law by equivalent quantities involving the actual
and commanded values of the normal acceleration, which are
actually known directly. From Equation 58 and the definitions of cc
and 8,

g - c = F(a - 60 + H(8 - 8).

But from the definitions of x and u, the control of Equation 71 is

8- = -[2(C- &) + 4TnTv]/B,

32



NWC TP 7030

where denotes the Kalman filter estimate of v, so it can be
expressed as

8-6 = _{!2[g - c - H(8 - 8)1/F + q/ Q,/B.

Solving for 8 and substituting from Equation 61 for 8 then gives

8 Ac C22(g _ c) + TFfl$ (72)
AH - FB FB - a 2H

as the desired control law, where the role of the Kalman filter is now
limited to providing v from the derived measurements of Equation
65, which from Equation 61 can be expressed as

g - HS BC
Z+ AH-FB (73)

This is essentially the concept of plant inversion via state feedback
described in Reference 9.

A control law of this type performs well at the nominal
conditions for which it is designed (see Figure 2b), as might be
expected from its use of feedback. It can still perform badly,
however, if the missile speed and altitude are very different from
these nominal values (see Figures 2c and 2d). This shows the need
for an adaptive extension of such a control law.

It was found empirically that the dynamic pressure Q and, to a
lesser extent, the aerodynamic derivative Cma are important
parameters to estimate adaptively. For this purpose, it is preferable
to use ln(Q) as the dynamic-pressure parameter, since it can
legitimately have a Normal distribution; also, it is preferable to use
Equation 58 to eliminate a in Equation 57 so that g can be used
there as a directly known quantity to cancel out additional
approximation errors. (This latter stratagem did not help in the case
of the simple nonadaptive autopilot.) If variations in the other

33



NWC TP 7030

aerodynamic derivatives are ignored, this allows the dynamic
system to be expressed as

a = q- g/Vm, (74)

q = ( Vkfu/P)ee%+ .9iV + wp, (75)F

=wo, (76)

and

4= wV, (77)

where the lateral acceleration g is treated as a known quantity. A,

B, F, and HI are evaluated at some nominal missile altitude and
airspeed Vm. Also,

0 = ln(Q/Q)

V = Cmc/a

for

Q=Q
Q = Q } at the nominal altitude and airspeed,

Cma = m

and wp, w0 , and w. are independent noise processes introduced for
a realistic degree of uncertainty. The variance parameters used for
these noises are, respectively,

qp, left as a design parameter

q0 = (prior variance of 0)/T

34



NWC TP 7030

qy = (prior variance of W)/T,

where T is the time scale over which the parameters can be
expected to change drastically because of altered flight conditions.

The control optimization approach used above for the nominal
flight conditions can be extended to the present situation by

considering a, q, 8, x, v, and u of Equations 59-64 for the actual but a
priori unknown flight conditions and the variable z, defined as

Z= g-c - (8 - 8), (78)

where F and H are still the values of F and H at the known nominal
condition. Then it follows from Equations 59-61, 74, and 75 that
(for a constant commanded acceleration c),

x = V, (79)

v = eeu + V--(g - c - Heu) + wp, (80)
F

and

z = eex + -(e° - 1)u. (81)
P

Consider choosing the autopilot design frequency Q so that 9 , I AI
for any "reasonable" flight condition. If z could be measured and 8
computed from u, the desired autopilot behavior could then be
approximated by generating u with the control law that minimizes
the criterion 69, with G = I B I /Q, for the dynamics of Equations 76,

77, 79, and 80 (see discussion of Equations 69-71). Since 8 is
defined in terms of the unknown actual flight conditions, the
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controller cannot really measure z or determine the actual control 8
from u. However, 8 is a rather small quantity. As an expedient
approximation, the optimal control law for u is determined as if 8
(but not A, B, F, and H) were known and then added to an estimate

of 8. For this purpose, A is also ignored in Equation 80 as relatively
small, T is assumed large enough that we and w., in Equations 76
and 77 can be ignored, and a low-intensity noise n is added to z of
Equation 81 to provide a realistic degree of uncertainty. Then, for
small 0, this control problem becomes approximately that of
minimizing

J=E ftx2+ (1 + 20)u2 dt (82)

0 (82)) I

(with tf large) for the dynamics

X = v, (83)

v = Biu + Bi0u + wp, (84)

0=0, (85)

and the state measurements

z = x + Ox + -Ou + n. (86)

The variance parameter of n in Equation 86 is taken as c4qp, where T

is some specified time constant such that 92, o, 1.

Since r is small, Equations 82-86 become an optimal control
problem of the form analyzed above for 0 - 0. Applying the results
developed there shows that (away from the terminal boundary at
tf) the optimal control law is approximated asymptotically by
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u + + 1 ] 4I (87)
B(1 + 6) BF + )

where Tl in the second control term (called dither) is generated by

11i= Y/1" 1
-L(z- z)1- 

(88)

and where i, , and 0 are the approximate conditional expectations
of x, v, and 0 produced by the extended Kalman filter for Equations

83-86, L is the corresponding conditional variance of 0, and i is the
approximate conditional expectation of z, namely

z= (1 + )x + - u. (89)

To convert this result into a feasible control law as a

sophisticated user might, the quantity (1 + 0) is replaced by ei for
robustness and the reasoning used in deriving Equation 72 from
Equation 71 is applied to Equation 87 to obtain

A _ Q -_2(g _ _C) + q2- _ - (_2I/_)_ , (90)

FB - f2fH

where

= Ac (91)

A B

37



NWC TP 7030
/ = ,q ee

P= Be

(92)AI flee

= q+ g/V m

and where €j, 0, and ' are the conditional mean estimates for q, 0,
and Vt generated by the extended Kalman filter for the more
accurate equations of motion (Equations 74-77). L in Equation 88 is
likewise the conditional variance of 0 from this more accurate filter.
The measurement for this more accurate filter is constructed as

Z= g-H8 (93)

so that, with the same measurement noise added, it follows from
Equation 58 and the definition of 0 that

z=eeoa+-(e6 - 1) 8+n. (94)

Also, its (approximate) conditional mean is therefore

e6& + - (e - 1) 8. (95)

In summary, the adaptive control law derived in this way is

that specified by Equations 88, 90-93 and 95 with v, 0, V, and L
(which is var(0)) as generated from the measurements of Equation
95 by the extended Kalman filter for Equations 74-77 and 94.
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Figure 3 shows the performance of this control law, both with and
without the dither term containing i, in a realistic missile and
aerodynamic simulation. The missile's fin deflection 8 was limited to
±25 degrees, so the control laws actually used saturated at those
values. Three flight conditions were simulated:

1. 3,000-ft. altitude at Mach 3

2. 20,000-ft. altitude at Mach 2 (nominal)

3. 60,000-ft. altitude at Mach 1.5.

The commanded acceleration c in each case was the step function
indicated in Figure 3. These flight conditions covered a dynamic
pressure variation over a factor of 65 as well as a factor of 2
variation in Mach number. For comparison, Figure 2 shows the
corresponding performance of the nonadaptive version of this
control law and also that of the open-loop control law for the
nominal flight condition only. The nonadaptive autopilot was clearly
a failure at flight conditions 1 and 3 (note the scale changes in
Figures 2b and 2d), although it and the adaptive autopilot
performed almost identically at the nominal condition 2. It was
always helpful to use the dither control component in the adaptive
autopilot, but its effect was barely noticeable except at the high-
altitude flight condition 3, where the time to adapt to the
nonnominal flight parameters was reduced by one-half. The
dynamic pressure was so low at flight condition 3 that the simulated
missile needed a 10 degree angle of attack to achieve even the 1-
gravity limits of the commanded normal acceleration.

The operation of the adaptive autopilot is displayed
schematically in Figure 4, where the definitions

p = Cn8/Cna ]
and (at the nominal flight condition)

r = Cm6/CmaJ

are adopted for convenience.
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/ -FLIGHT DYNAMICS COMMANDED
ACCELERATION
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FIGURE 4. Adaptive Missile Autopilot Operation.
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